New Technology Cuts Industrial Odours, Pollutants

US - A North Carolina State University researcher has devised a new technology that really does not stink. In fact, it could be the key to eliminating foul odours and air pollutants emitted by industrial chicken rendering facilities and, ultimately, large-scale pig feedlots.
calendar icon 2 September 2009
clock icon 3 minute read

Dr Praveen Kolar, assistant professor of biological and agricultural engineering at NC State, has developed an inexpensive treatment process that significantly mitigates odours from poultry rendering operations. Rendering facilities take animal by-products, e.g. skin, bones, feathers, and process them into useful products such as fertiliser. However, the rendering process produces extremely foul odours.

These emissions are not currently regulated by the government but the smell can be extremely disruptive to a facility's community. The industry currently uses chemical 'scrubbers' to remove odour-causing agents but this technique is not very effective, Dr Kolar says. Furthermore, some of the odour-causing compounds are aldehydes, which can combine with other atmospheric compounds to form ozone, triggering asthma attacks and causing other adverse respiratory health effects.

Dr Kolar, working with his co-author Dr James Kastner at the University of Georgia, has designed an effective filtration system that takes advantage of catalytic oxidation to remove these odour-causing pollutants. Specifically, the researchers use ozone and specially designed catalysts to break down the odour-causing compounds. This process takes place at room temperature so there are no energy costs and results in only two by-products: carbon dioxide and pure water.

The researchers developed the catalysts by coating structures made of activated carbon with a nanoscale film made of cobalt or nickel oxides, Dr Kolar says. "We used activated carbon because its porous structure gives it an extremely large surface area," Dr Kolar explains, "meaning that there is more area that can be exposed to the odourous agents."

The cobalt and nickel oxide nanofilms make excellent catalysts, Dr Kolar explains. "They increase the rate of the chemical reaction between the odour-causing compounds and the ozone, making the process more efficient. They are also metals that are both readily available and relatively inexpensive.”

Dr Kolar says his next goal is to apply this research to industrial hog farms. "This technology could be applied to swine operations to address odours and ammonia emissions," he sadi. "My next step is to try to pursue this research on a large scale."

The research, 'Room-Temperature Oxidation of Propanal Using Catalysts Synthesized By Electrochemical Deposition', is published in the August issue of Transactions of the American Society of Agricultural and Biological Engineers.

© 2000 - 2024 - Global Ag Media. All Rights Reserved | No part of this site may be reproduced without permission.